Homogeneous Ziegler-Natta Polymerization of Functionalized Monomers Catalyzed by Cationic Group **IV Metallocenes**

Michael R. Kesti, Geoffrey W. Coates, and Robert M. Waymouth*

> Department of Chemistry Stanford University Stanford, California 94305 Received July 29, 1992

Ziegler-Natta catalysts are remarkable in their ability to polymerize α -olefins to high molecular weight, stereoregular polyolefins.¹⁻⁴ One of the major limitations of conventional Ziegler-Natta catalysts is their intolerance to Lewis bases; catalysts based on titanium halides and alkylaluminum cocatalysts are poisoned by most types of monomers containing ethers, esters, amines, and carboxylic acids.^{1,5} The absence of functionality in hydrocarbon polymers seriously affects their adhesive properties, affinity for dyes, permeability, and compatibility with more polar polymers. Previous attempts⁶ to polymerize sterically hindered amines,^{7,8} esters and amides,⁹⁻¹¹ alkyl halides,¹² and carboxylic acids¹³ using catalysts derived from TiCl₃ and AlR_{3-n}Cl_n have achieved limited success due to the severe loss of catalytic activity in the presence of these monomers.14

The recent development¹⁵⁻²⁰ of cationic, group 4 metallocene

(3) (a) Kaminsky, W.; Kulper, K.; Brintzinger, H. H.; Wild, F. R. W. P. Angew. Chem., Int. Ed. Engl. 1985, 24, 507. (b) Kaminsky, W.; Spiehl, R. Makromol. Chem. 1989, 190, 515.

(4) (a) Pino, P.; Cioni, P.; Galimberti, M.; Wei, J.; Piccolrovazzi, N. In Transition Metals and Organometallics as Catalysts for Olefin Polymeri-zation; Kamisky, W., Sinn, H., Eds.; Springer-Verlag: New York, 1988; p 269. (b) Pino, P.; Cioni, P.; Wei, J. J. Am. Chem. Soc. 1987, 109, 6189.

(5) Polymerization of borane monomers has been investigated recently by Chung: (a) Chung, T. C. *Macromolecules* 1988, 21, 865. (b) Ramakrishnan, S.; Berluche, E.; Chung, T. C. *Macromolecules* 1990, 23, 378. (c) Chung, T. C. *Chemtech* 1991, 21, 496. (d) Chung, T. C. J. Inorg. Organomet. Polym. 1001 4: 37 1991. 1. 37.

(6) Padwa, A. R. Prog. Polym. Sci. 1989, 14, 811.

(7) Homopolymerization of amines and silyl ethers: Giannini, U.; Bruckner, G.; Pellino, E.; Cassata, A. J. Polym. Sci., Part C 1968, 22, 157. (8) Copolymerizations of hindered piperidines with propylene: Wilén, C.

E.; Auer, M.; Näsman, J. H. J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 1163.

(9) Polymerization of esters: (a) Purgett, M. D. Ph.D. Thesis, University of Massachusetts, 1984. (b) Vogl, O. J. Macromol. Sci., Chem. 1985, A22 -7), 541. (c) Purgett, M. D.; Macknight, W. J.; Vogl, O. Polym. Eng. Sci. 1987, 27, 1461. (d) Purgett, M. D.; Vogl, O. J. Polym. Sci., Part A: Polym. Chem. 1988, 26, 677. (e) Purgett, M. D.; Vogl, O. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 2051. (f) Landoll, L. M.; Breslow, D. S. J. Polym. Sci., Part A: Polym. Chem. 1989, 27, 2189.

(10) (a) Schulz, D. N.; Kitano, K.; Burkhardt, T. J.; Langer, A. W. U.S. Patent 4 518 757, 1984. (b) Schulz, D. N.; Bock, J. J. Macromol. Sci., Chem. 1991, A28 (11-12), 1235.

(1) (a) Clark, K. J. U.S. Patent 3 492 277, 1970. (b) Holler, H. V.;
Youngman, E. A. U.S. Patent 3 761 458, 1973. (c) Collete, J. W.; Ro, R. S.;
Sonnenberg, F. M. U.S. Patent 3 884 888, 1975. (d) Collete, J. W.; Ro, R. S.;
Sonnenberg, F. M. U.S. Patent 3 901 860, 1975. (e) Collete, J. W.; Ro, R. S.;
Sonnenberg, F. M. U.S. Patent 4 017 669, 1977. (f) Marie, G.; Lang, A.; Chapelet, G. U.S. Patent 4 139 417, 1979. (g) Arlt, K. P.; Binsack, R.;
Grigo, U.; Neuray, D. U.S. Patent 4 423 196, 1983. (h) Kawasaki, M.; Minami, S. Jpn. Kokai JO 1-259012-A, 1989

(12) Polymerization of alkylhalides. (a) Bacskai, R. J. Polym. Sci., Part A 1965, 3, 2491. (b) Clark, K. J.; Powell, T. Polymer 1965, 6, 531. (c) Overberger, C. G.; Khattab, G. J. Polym. Sci., Part A-1 1969, 7, 217. (13) Datta, S. In High Value Polymers; Fawcett, A. H., Ed.; The Royal

Society of Chemistry: Cambridge, 1991; pp 33-57

(14) In many cases the functional group must be precomplexed with 1

(14) In many cases the functional group must be precomplexed with 1 equiv of Al(CH₃)₃, which results in residual ash in the polymer.
(15) (a) Jordan, R. F.; Bajgur, C. S.; Willett, R.; Scott, B. J. Am. Chem. Soc. 1986, 108, 7410. (b) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. J. Am. Chem. Soc. 1987, 109, 4111. (c) Jordan, R. F. J. Chem. Educ. 1988, 65, 285. (d) Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N. Organometallics 1989, 8, 2892. (e) Jordan, R. F. J. Chem. Educ. 1988, 65, 285. (d) Jordan, R. F.; LaPointe, R. E.; Bradley, P. K.; Baenziger, N. Organometallics 1989, 8, 2892. (e) Jordan, R. F. J. Dependence and Mission 1990. F.; LaPointe, R. E.; Baenziger, N.; Hinch, G. D. Organometallics 1990, 9, 1539

catalysts provides one solution to this long-standing problem.²¹ These catalysts have been shown to polymerize olefins in the absence of alkylaluminum cocatalysts in solvents such as anisole, N.N-dimethylaniline, and chlorobenzene.^{18d,f} Herein, we report that cationic, group 4 metallocenes are active catalysts for the homopolymerization of α -olefins containing silyl-protected alcohols and tertiary amines.

Catalysts derived from the reaction of Cp*₂ZrMe₂ with B- $(C_6F_5)_3$ or $[N,N-dimethylanilinium][B(C_6F_5)_4]$ (denoted as $[Cp^{*}_{2}ZrMe]^{+}X^{-}, Cp^{*} = pentamethylcyclopentadienyl, X = B-(C_{6}F_{5})_{4}$ or CH₃B(C₆F₅)₃)^{16,17,19} are active for the polymerization of the functionalized diene and α -olefins 4-TMSO-1,6-heptadiene (TMSO = trimethylsiloxy), 5-TBDMSO-1-pentene (TBDMSO = tert-butyldimethylsiloxy), and 5-(N,N-diisopropylamino)-1pentene (eqs 1 and 2, Table I).²² Cyclopolymerization²³ of

4-TMSO-1,6-heptadiene occurs rapidly at room temperature in the presence of $[Cp_2^*ZrMe]^+X^-$ (eq 2, average activity²⁴ at 37% conversion = 720 turnovers/h, >250 turnovers, Table I, entry 1) to yield poly(methylene-3,5-(1-TMSO)cyclohexanediyl), Endgroup analysis of the polymer by ¹H and ¹³C NMR reveals methylenecyclohexane and cyclohexane end groups, indicative of chain transfer via β -H elimination. As for 1-hexene, low molecular weight oligomers are obtained at room temperature;²⁵ higher molecular weights are observed at lower reaction temperatures. Higher molecular weight poly(methylene-3,5-(1-TMSO)cyclohexanediyl) $(M_n = 46000, M_w/M_n = 3.1, 38\% \text{ yield}^{26})$ is obtained from the reaction of $[Cp_{2}^{*}HfMe]^{+}X^{-}$ in *neat* monomer at -25 °C. Complete cyclization was observed as no unsaturation was detected by ¹H NMR.

The chiral $[(EBTHI)ZrMe]^+X^-$ catalysts (EBTHI = ethylene-1,2-bis(η^{5} -4,5,6,7-tetrahydro-1-indenyl)) are more easily poisoned by silvl ethers as compared to the $[Cp_2^TMe]^+X^-$

(16) (a) Turner, H. W.; Hlatky, G. G. Eur. Pat. Appl. 0277003, 1988.
(b) Turner, H. W. Eur. Pat. Appl. 0277044, 1988. (c) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728.

(17) (a) Ewen, J. A. Eur. Pat. Appl. 0427697, 1991. (b) Ewen, J. A.; Elder, M. J.; Jones, R. L.; Haspeslagh, L.; Atwood, J. L.; Bott, S. G.; Rob-(18) (a) Bochman, M.; Wilson, L. M. J. Chem. Soc., Chem. Commun.

1986, 1610. (b) Taube, R.; Krukowka, L. J. Organomet. Chem. 1988, 347 C9. (c) Bochmann, M.; Jaggar, A. J.; Nicholls, J. C. Angew. Chem., Int. Ed. Engl. 1990, 7, 780. (d) Eshuis, J. W.; Tan, Y. Y.; Teuben, J. H. J. Mol. Catal. 1990, 62, 277. (e) Amorose, D. M.; Lee, R. A.; Petersen, J. L. Organometallics 1991, 10, 2191. (f) Eshuis, J. W.; Tan, Y. Y.; Meetsma, A.; Teuben, J. H.; Renkema, J.; Evens, G. G. Organometallics 1992, 11, 362-369

(19) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623.

(20) Chien, J. C. W.; Tsai, W. M.; Rausch, M. D. J. Am. Chem. Soc. 1991. 113. 8570.

(21) Related systems will catalyze the polymerization of methacrylates.
(a) Zr: Collins, S.; Ward, D. G. J. Am. Chem. Soc. 1992, 114, 5460. (b) Sm: Yasuda, H.; Yamamoto, H.; Yokota, K.; Miyake, S.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 4908.

(22) Allyloxy-tert-butyldimethylsilane, (allyloxy)trimethylsilane, 5-TMSO-1-pentene, diallyl ether, diallylphenylamine, and diallyl sulfide did not polymerize under these conditions.

(23) (a) Butler, G. B. Acc. Chem. Res. 1982, 15, 370. (b) Resconi, L.; Waymouth, R. M. J. Am. Chem. Soc. 1990, 112, 4953. (c) Coates, G. W.; Waymouth, R. M. J. Am. Chem. Soc. 1991, 113, 6270. (d) Resconi, L.; Coates, G. W.; Mogstad, A.; Waymouth, R. M. J. Macromol. Sci., Chem. Ed. 1991, A28, 1225. (e) Kesti, M. R.; Waymouth, R. M. J. Am. Chem. Soc. 1992, 114, 3565.

(24) Average activities ±50 turnovers/h; turnover = millimoles of monomer consumed per millimole of Zr.

(25) End-group analysis of the low molecular weight polymers revealed the presence of vinylidene end groups, consistent with β -H elimination. (26) $M_{\rm p}$ estimated from ¹H NMR end-group analysis. $M_{\rm w}/M_{\rm p}$ determined

by GPC analysis. The reaction mixture became quite viscous under these conditions (0.044 mmol of $Cp^*_2HfMe_2$, 0.045 mmol of [N,N-dimethyl-anilinium][B(C₆F₅)₄], 13.5 mmol of 4-(trimethylsiloxy)-1,6-heptadiene).

⁽¹⁾ Boor, J., Jr. Ziegler-Natta Catalysts and Polymerizations; Academic Press: New York, 1979.

^{(2) (}a) Ewen, J. A. J. Am. Chem. Soc. 1984, 106, 6355. (b) Ewen, J. A.; Haspeslagh, L.; Atwood, J. L.; Zhang, H. J. Am. Chem. Soc. 1987, 109, 6544. (c) Ewen, J. A.; Jones, R. L.; Razavi, A.; Ferrara, J. D. J. Am. Chem. Soc. 1988, 110, 6255.

9680 Table I^a

entry	monomer	metallocene (mmol)	$\frac{B(C_6F_5)_3}{(mmol)}$	temp °C ^b	time (min)	conversn (GC)	turnovers ^c	$M_{\rm w}/M_{\rm n}^{d}$	<i>M</i> _n ^e
		Cp* ₂ ZrMe ₂							
1	OTMS	(0.010)	(0.0050)	22	30	59	280	4.3	920
2	$\sim \sim$	(0.020)	(0.010)	-25	120	98	249	2.7	8100
	OTBDMS	(EBTHI)ZrMe ₂							
3	$\sim \sim$	(0.042)	(0.021)	24	11	81	97	5.3	2900
		Cp* ₂ ZrMe ₂							
4	\sim	(0.010)	(0.0049)	22	10	63	324	3.3	670
5	·	(0.010)	(0.0049)	-25	120	45	209	2.1	11 000
		(EBTHI)ZrMe ₂							
6		(0.010)	(0.0049)	22	10	72	351	3.4	500
7		(0.010)	(0.0049)	-25	120	20	95	1.8	6300
		Cp [*] ₂ ZrMe ₂							
8	•	(0.020)	(0.011)	22	30	40	97	2.7	1800
9		(0.020)	(0.011)	-25	120	77	187	2.9	10 000
		Cp* ₂ ZrMe ₂							
10	\checkmark	(0.041)	(0.020)	22	60	75	91		2900
11		(0.039) (EBTHI)ZrMe-	(0.023)	-25	120	68	78		8800
12	I	(0.057)	(0.028)	22	60	72	62		5400

^aConditions: A toluene solution of $B(C_6F_5)_3$ was added to a toluene solution of metallocene and 5.0 mmol of monomer; total solution volume = 5 mL. Reactions were monitored by GC. ^b Temperature = ± 3 °C. ^cTurnovers = millimoles of monomer consumed per millimole of metallocene. ^d Determined by GPC analysis. GPC analyses of the polyamines were irreproducible. ^eEstimated from ¹H NMR end-group analysis. Cp^{*} = pentamethylcyclopentadienyl, EBTHI = ethylene-1,2-bis(η^5 -4,5,6,7-tetrahydro-1-indenyl), TMS = trimethylsilyl, TBDMS = tert-butyldimethylsilyl.

derivatives. [(EBTHI)ZrMe]⁺X⁻ catalysts are inactive for the polymerization of 4-TMSO-1,6-heptadiene but readily polymerize the more sterically hindered TBDMS-protected monomer (average activity at 81% conversion = 530 turnovers/h, 88% cyclized by ¹H NMR),

Activities for the polymerization of 5-TBDMSO-1-pentene and $5 \cdot (N, N$ -diisopropylamino)-1-pentene in the presence of $[Cp_{2}^{*}ZrMe]^{+}X^{-}$ are lower than that for 1-hexene. Average activities range from 2700 turnovers/h for 1-hexene (44% conversion) to 190 turnovers/h for 5-TBDMSO-1-pentene (40% conversion) to 130 turnovers/h for 5-(N, N-diisopropylamino)-1-pentene (55% conversion). At least 100 turnovers can be achieved for both functionalized monomers.^{27,28} Chiral *rac*-[(EBTHI)ZrMe]⁺X⁻ catalysts are active for the homopolymerization of 1-hexene and 5-(N, N-diisopropylamino)-1-pentene but not for 5-TBDMSO-1-pentene. Preliminary ¹³C NMR analyses of polymers obtained in the presence of [(EBTHI)ZrMe]⁺X⁻ are consistent with highly isotactic microstructures.²⁹

Treatment of poly(methylene-3,5-(1-TMSO)cyclohexanediyl) with aqueous HCl in hexanes affords the corresponding *poly-alcohol* as a white powder (eq 1, 98% yield) which was soluble in DMF, DMSO, and pyridine.³⁰ Thermogravimetric analysis of this material shows <5% decomposition below 330 °C.³¹ Treatment of poly(5-(*N*,*N*-diisopropylamino)-1-pentene) with HCl yields the corresponding poly(ammonium chloride) which is *water* soluble (eq 2).³²

A major advantage of these metallocene-based catalysts is that the ligand system can be systematically modified to provide the optimal combination of catalytic activity, stereospecificity, and tolerance to functionality. Further studies are underway to extend these results to the synthesis of *optically active*, *functionalized polyolefins* via enantioselective cyclopolymerization.^{23c}

Acknowledgment. We gratefully acknowledge financial support from the NSF (CHE-9113286). M.R.K. thanks the Department of Education for a GAANN Fellowship. G.W.C. gratefully acknowledges a fellowship from the Fannie and John Hertz Foundation.

Supplementary Material Available: Experimental procedures and polymer characterization (8 pages). Ordering information is given on any current masthead page.

Mechanism of Peptide Release from Major Histocompatibility Complex Class II Molecules

Stephan N. Witt,[†] Brian R. Clark,[‡] and Harden M. McConnell^{*,†}

Department of Chemistry Gilbert Laboratory of Biological Sciences Stanford University, Stanford, California 94305 Anergen, Inc., 301 Penobscot Drive Redwood City, California 94063 Received July 13, 1992

Major histocompatibility complex (MHC) class II heterodimeric ($\alpha\beta$) proteins are present as complexes with peptides on the outer plasma membranes of antigen presenting cells.¹ A single MHC class II molecule can bind many different peptides. A significant aspect of the reactions between peptides and solubilized MHC class II molecules is that complexes dissociate slowly ($t_{1/2}$

⁽²⁷⁾ In contrast, <50 turnovers were observed for the homopolymerization of functional monomers with $TiCl_3/AlR_3$ catalysts (see refs 7, 9, 11b).

⁽²⁸⁾ Attempts to directly compare rates for each monomer were frustrated by the sensitivity of the catalyst to impurities. For reproducible results, S-TBDMSO-1-pentene required approximately 2 times the catalyst concentration and $5 \cdot (N, N-diisopropylamino)$ -1-pentene required approximately 4 times the catalyst concentration to obtain rates compared to 1 herein

times the catalyst concentration to obtain rates comparable to 1-hexene. (29) Poly(5-(N,N-diisopropylamino)-1-pentene): >90% mm dyads. Poly(1-hexene): >90% mm dyads. See: Asakura, T.; Demura, M.; Nishiyama, Y. Macromolecules 1991, 24, 2334.

⁽³⁰⁾ Characterized by IR, ¹H and ¹³C NMR (DMSO-d₆), and elemental analysis.

⁽³¹⁾ In contrast, poly(vinyl alcohol) decomposes below 250 °C (see ref 5). (32) Polymeric Amines and Ammonium Salts; Goethals, E. J., Ed.; Pergamon Press; New York, 1980. Characterized by IR, ¹H and ¹³C NMR (CDCl₃), and elemental analysis.

^{*} Correponding author address: Department of Chemistry, Mudd Chemistry Building 5080, Stanford University, Stanford CA 94305-5080. Stanford University.

[‡]Anergen, Inc.

⁽¹⁾ Rothbard, J. B.; Gefter, M. L. Annu. Rev. Immunol. 1991, 5, 477-540.